Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Sci Rep ; 13(1): 14482, 2023 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-37660087

RESUMEN

Our understanding of the drivers of the temporal dynamics of livestock mobility networks is currently limited, despite their significant implications for the surveillance and control of infectious diseases. We analyzed the effect of time-varying environmental and economic variables-biomass production, rainfall, livestock market prices, and religious calendar on long-distance movements of cattle and small ruminant herds in Senegal in the years 2014 and 2019. We used principal component analysis to explore the variation of the hypothesized explanatory variables in space and time and a generalized additive modelling approach to assess the effect of those variables on the likelihood of herd movement between pairs of administrative units. Contrary to environmental variables, the patterns of variation of market prices show significant differences across locations. The explanatory variables at origin had the highest contribution to the model deviance reduction. Biomass production and rainfall were found to affect the likelihood of herd movement for both species on at least 1 year. Market price at origin had a strong and consistent effect on the departure of small ruminant herds. Our study shows the potential benefits of regular monitoring of market prices for future efforts at forecasting livestock movements and associated sanitary risks.


Asunto(s)
Ganado , Rumiantes , Bovinos , Animales , Senegal , Biomasa , Movimiento
2.
Parasitology ; 150(9): 852-857, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37496390

RESUMEN

Neurocysticercosis is recognized as an important health issue in the Malagasy population. To date, investigations into prevalence of infection with the causative agent, Taenia solium, in the parasite's natural animal intermediate hosts, have relied on serological methods which have been found to be non-specific. We determined the prevalence of porcine cysticercosis among pigs from a contiguous area of the Betafo and Mandoto administrative districts, Vakinankaratra Region, Madagascar. One hundred and four slaughter-weight pigs were examined by detailed necropsy examination including slicing of the heart, tongue, masseter muscles, diaphragm and carcase musculature. Thirty-seven animals (35.6%) were found infected with T. solium, representing one of the highest rates of infection ever reported, worldwide. These findings highlight the importance of T. solium in Madagascar and support the need for increased efforts to prevent the parasite's transmission to reduce its burden on the health of the Malagasy population.


Asunto(s)
Cisticercosis , Enfermedades de los Porcinos , Taenia solium , Porcinos , Animales , Madagascar/epidemiología , Prevalencia , Enfermedades de los Porcinos/epidemiología , Cisticercosis/epidemiología , Cisticercosis/veterinaria , Taenia solium/fisiología
3.
J Antimicrob Chemother ; 78(8): 1848-1858, 2023 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-37341144

RESUMEN

BACKGROUND: ESBL-producing Escherichia coli (ESBL-Ec) is considered a key indicator for antimicrobial resistance (AMR) epidemiological surveillance in animal, human and environment compartments. There is likelihood of ESBL-Ec animal-human transmission but proof of cross-compartment transmission is still unclear. OBJECTIVES: To characterize ESBL-Ec genetic similarity in various compartments (humans, animals and environment) from a rural area of Madagascar. METHODS: We collected ESBL-Ec isolates prospectively from humans, animals and the environment (water) between April and October 2018. These isolates were subject to WGS and analysed with cutting-edge phylogenomic methods to characterize population genetic structure and infer putative transmission events among compartments. RESULTS: Of the 1454 samples collected, 512 tested positive for ESBL-Ec. We successfully sequenced 510 samples, and a phylogenomic tree based on 179 365 SNPs was produced. Phylogenetic distances between and amongst compartments were indistinguishable, and 104 clusters of recent transmission events between compartments were highlighted. Amongst a large diversity of ESBL-Ec genotypes, no lineage host specificity was observed, indicating the regular occurrence of ESBL-Ec transfer among compartments in rural Madagascar. CONCLUSIONS: Our findings stress the importance of using a phylogenomic approach on ESBL-Ec samples in various putative compartments to obtain a clear baseline of AMR transmissions in rural settings, where one wants to identify risk factors associated with transmission or to measure the effect of 'One Health' interventions in low- and middle-income countries.


Asunto(s)
Infecciones por Escherichia coli , Animales , Humanos , Infecciones por Escherichia coli/epidemiología , Madagascar/epidemiología , Filogenia , beta-Lactamasas/análisis , Escherichia coli , Antibacterianos/farmacología
4.
Acta Trop ; 239: 106835, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36649804

RESUMEN

Rift Valley fever (RVF) recently re-emerged in Mayotte. We described, for the first time, that the mosquito species Eretmapodites subsimplicipes, a highly abundant species in Mayotte, is a competent vector for the transmission of RVF virus using three distinct populations native to Mayotte. We also showed that Aedes albopictus specimens are able to transmit RVF virus (RVFV) as previously observed in mosquito populations of other countries emphasizing the need of the increase vigilance for this highly invasive species of global distribution. Altogether, these results underline the epidemiological importance of both species for RVFV transmission in Mayotte and contribute to better understand the RVF epidemiological cycle and help to implement efficient prevention measures.


Asunto(s)
Aedes , Fiebre del Valle del Rift , Virus de la Fiebre del Valle del Rift , Animales , Comoras , Mosquitos Vectores
5.
J Antimicrob Chemother ; 77(5): 1254-1262, 2022 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-35194647

RESUMEN

BACKGROUND: Extended-spectrum ß-lactamase-producing Escherichia coli (ESBL-Ec) is a major cause of infections worldwide. An understanding of the reservoirs and modes of transmission of these pathogens is essential, to tackle their increasing frequency. OBJECTIVES: We investigated the contributions of various compartments (humans, animals, environment), to human colonization or infection with ESBL-Ec over a 3 year period, on an island. METHODS: The study was performed on Reunion Island (Southwest Indian Ocean). We collected ESBL-Ec isolates prospectively from humans, wastewater and livestock between April 2015 and December 2018. Human specimens were recovered from a regional surveillance system representative of the island's health facilities. These isolates were compared with those from livestock and urban/rural wastewater, by whole-genome sequencing. RESULTS: We collected 410 ESBL-Ec isolates: 161 from humans, 161 from wastewater and 88 from animals. Phylogenomic analysis demonstrated high diversity (100 STs), with different STs predominating among isolates from humans (ST131, ST38, ST10) and animals (ST57, ST156). The large majority (90%) of the STs, including ST131, were principally associated with a single compartment. The CTX-M-15, CTX-M-27 and CTX-M-14 enzymes were most common in humans/human wastewater, whereas CTX-M-1 predominated in animals. Isolates of human and animal origin had different plasmids carrying blaCTX-M genes, with the exception of a conserved IncI1-ST3 blaCTX-M-1 plasmid. CONCLUSIONS: These molecular data suggest that, despite their high level of contamination, animals are not a major source of the ESBL-Ec found in humans living on this densely populated high-income island. Public health policies should therefore focus primarily on human-to-human transmission, to prevent human infections with ESBL-Ec.


Asunto(s)
Infecciones por Escherichia coli , Salud Única , Animales , Antibacterianos , Escherichia coli , Infecciones por Escherichia coli/epidemiología , Infecciones por Escherichia coli/veterinaria , Humanos , Ganado , Tipificación de Secuencias Multilocus , Plásmidos , Reunión/epidemiología , Aguas Residuales , beta-Lactamasas/genética
6.
Nat Commun ; 12(1): 5593, 2021 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-34552082

RESUMEN

The persistence mechanisms of Rift Valley fever (RVF), a zoonotic arboviral haemorrhagic fever, at both local and broader geographical scales have yet to be fully understood and rigorously quantified. We developed a mathematical metapopulation model describing RVF virus transmission in livestock across the four islands of the Comoros archipelago, accounting for island-specific environments and inter-island animal movements. By fitting our model in a Bayesian framework to 2004-2015 surveillance data, we estimated the importance of environmental drivers and animal movements on disease persistence, and tested the impact of different control scenarios on reducing disease burden throughout the archipelago. Here we report that (i) the archipelago network was able to sustain viral transmission in the absence of explicit disease introduction events after early 2007, (ii) repeated outbreaks during 2004-2020 may have gone under-detected by local surveillance, and (iii) co-ordinated within-island control measures are more effective than between-island animal movement restrictions.


Asunto(s)
Modelos Teóricos , Fiebre del Valle del Rift/prevención & control , Fiebre del Valle del Rift/transmisión , Virus de la Fiebre del Valle del Rift/fisiología , Animales , Comoras/epidemiología , Ganado/virología , Fiebre del Valle del Rift/epidemiología , Estudios Seroepidemiológicos , Zoonosis/epidemiología , Zoonosis/prevención & control , Zoonosis/transmisión
7.
Parasit Vectors ; 14(1): 288, 2021 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-34044880

RESUMEN

BACKGROUND: Reunion Island regularly faces outbreaks of bluetongue and epizootic hemorrhagic diseases, two insect-borne orbiviral diseases of ruminants. Hematophagous midges of the genus Culicoides (Diptera: Ceratopogonidae) are the vectors of bluetongue (BTV) and epizootic hemorrhagic disease (EHDV) viruses. In a previous study, statistical models based on environmental and meteorological data were developed for the five Culicoides species present in the island to provide a better understanding of their ecology and predict their presence and abundance. The purpose of this study was to couple these statistical models with a Geographic Information System (GIS) to produce dynamic maps of the distribution of Culicoides throughout the island. METHODS: Based on meteorological data from ground weather stations and satellite-derived environmental data, the abundance of each of the five Culicoides species was estimated for the 2214 husbandry locations on the island for the period ranging from February 2016 to June 2018. A large-scale Culicoides sampling campaign including 100 farms was carried out in March 2018 to validate the model. RESULTS: According to the model predictions, no husbandry location was free of Culicoides throughout the study period. The five Culicoides species were present on average in 57.0% of the husbandry locations for C. bolitinos Meiswinkel, 40.7% for C. enderleini Cornet & Brunhes, 26.5% for C. grahamii Austen, 87.1% for C. imicola Kieffer and 91.8% for C. kibatiensis Goetghebuer. The models also showed high seasonal variations in their distribution. During the validation process, predictions were acceptable for C. bolitinos, C. enderleini and C. kibatiensis, with normalized root mean square errors (NRMSE) of 15.4%, 13.6% and 16.5%, respectively. The NRMSE was 27.4% for C. grahamii. For C. imicola, the NRMSE was acceptable (11.9%) considering all husbandry locations except in two specific areas, the Cirque de Salazie-an inner mountainous part of the island-and the sea edge, where the model overestimated its abundance. CONCLUSIONS: Our model provides, for the first time to our knowledge, an operational tool to better understand and predict the distribution of Culicoides in Reunion Island. As it predicts a wide spatial distribution of the five Culicoides species throughout the year and taking into consideration their vector competence, our results suggest that BTV and EHDV can circulate continuously on the island. As further actions, our model could be coupled with an epidemiological model of BTV and EHDV transmission to improve risk assessment of Culicoides-borne diseases on the island.


Asunto(s)
Distribución Animal , Ceratopogonidae/clasificación , Insectos Vectores/clasificación , Animales , Lengua Azul/transmisión , Virus de la Lengua Azul , Bovinos , Ciervos , Brotes de Enfermedades , Cabras , Virus de la Enfermedad Hemorrágica Epizoótica , Caballos , Océano Índico , Insectos Vectores/virología , Modelos Estadísticos , Reunión , Medición de Riesgo , Estaciones del Año , Ovinos , Especificidad de la Especie
8.
PLoS Negl Trop Dis ; 15(3): e0009202, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33684126

RESUMEN

Rift Valley fever (RVF) is a vector-borne viral disease of major animal and public health importance. In 2018-19, it caused an epidemic in both livestock and human populations of the island of Mayotte. Using Bayesian modelling approaches, we assessed the spatio-temporal pattern of RVF virus (RVFV) infection in livestock and human populations across the island, and factors shaping it. First, we assessed if (i) livestock movements, (ii) spatial proximity from communes with infected animals, and (iii) livestock density were associated with the temporal sequence of RVFV introduction into Mayotte communes' livestock populations. Second, we assessed whether the rate of human infection was associated with (a) spatial proximity from and (b) livestock density of communes with infected animals. Our analyses showed that the temporal sequence of RVFV introduction into communes' livestock populations was associated with livestock movements and spatial proximity from communes with infected animals, with livestock movements being associated with the best model fit. Moreover, the pattern of human cases was associated with their spatial proximity from communes with infected animals, with the risk of human infection sharply increasing if livestock in the same or close communes were infected. This study highlights the importance of understanding livestock movement networks in informing the design of risk-based RVF surveillance programs.


Asunto(s)
Ganado , Fiebre del Valle del Rift/epidemiología , Animales , Comoras/epidemiología , Epidemias/veterinaria , Humanos , Modelos Biológicos , Factores de Riesgo , Zoonosis
9.
PLoS Negl Trop Dis ; 15(2): e0009029, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33600454

RESUMEN

Murine typhus is a flea-borne zoonotic disease that has been recently reported on Reunion Island, an oceanic volcanic island located in the Indian Ocean. Five years of survey implemented by the regional public health services have highlighted a strong temporal and spatial structure of the disease in humans, with cases mainly reported during the humid season and restricted to the dry southern and western portions of the island. We explored the environmental component of this zoonosis in an attempt to decipher the drivers of disease transmission. To do so, we used data from a previously published study (599 small mammals and 175 Xenopsylla fleas from 29 sampling sites) in order to model the spatial distribution of rat fleas throughout the island. In addition, we carried out a longitudinal sampling of rats and their ectoparasites over a 12 months period in six study sites (564 rats and 496 Xenopsylla fleas) in order to model the temporal dynamics of flea infestation of rats. Generalized Linear Models and Support Vector Machine classifiers were developed to model the Xenopsylla Genus Flea Index (GFI) from climatic and environmental variables. Results showed that the spatial distribution and the temporal dynamics of fleas, estimated through the GFI variations, are both strongly controlled by abiotic factors: rainfall, temperature and land cover. The models allowed linking flea abundance trends with murine typhus incidence rates. Flea infestation in rats peaked at the end of the dry season, corresponding to hot and dry conditions, before dropping sharply. This peak of maximal flea abundance preceded the annual peak of human murine typhus cases by a few weeks. Altogether, presented data raise novel questions regarding the ecology of rat fleas while developed models contribute to the design of control measures adapted to each micro region of the island with the aim of lowering the incidence of flea-borne diseases.


Asunto(s)
Infestaciones por Pulgas/veterinaria , Ratas/parasitología , Tifus Endémico Transmitido por Pulgas/epidemiología , Xenopsylla , Animales , Ecosistema , Infestaciones por Pulgas/epidemiología , Humanos , Incidencia , Mamíferos/parasitología , Reunión/epidemiología , Enfermedades de los Roedores/epidemiología , Enfermedades de los Roedores/parasitología , Estaciones del Año , Análisis Espacio-Temporal , Tifus Endémico Transmitido por Pulgas/transmisión
10.
Transbound Emerg Dis ; 68(4): 1966-1978, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33174371

RESUMEN

This article presents a participative and iterative qualitative risk assessment framework that can be used to evaluate the spatial variation of the risk of infectious animal disease introduction and spread on a national scale. The framework was developed through regional training action workshops and field activities. The active involvement of national animal health services enabled the identification, collection and hierarchization of risk factors. Quantitative data were collected in the field, and expert knowledge was integrated to adjust the available data at regional level. Experts categorized and combined the risk factors into ordinal levels of risk per epidemiological unit to ease implementation of risk-based surveillance in the field. The framework was used to perform a qualitative assessment of the risk of introduction and spread of foot-and-mouth disease (FMD) in Tunisia as part of a series of workshops held between 2015 and 2018. The experts in attendance combined risk factors such as epidemiological status, transboundary movements, proximity to the borders and accessibility to assess the risk of FMD outbreaks in Tunisia. Out of the 2,075 Tunisian imadas, 23 were at a very high risk of FMD introduction, mainly at the borders; and 59 were at a very high risk of FMD spread. To validate the model, the results were compared to the FMD outbreaks notified by Tunisia during the 2014 FMD epizootic. Using a spatial Poisson model, a significant alignment between the very high and high-risk categories of spread and the occurrence of FMD outbreaks was shown. The relative risk of FMD occurrence was thus 3.2 higher for imadas in the very high and high spread risk categories than for imadas in the low and negligible spread risk categories. Our results show that the qualitative risk assessment framework can be a useful decision support tool for risk-based disease surveillance and control, in particular in scarce-data environments.


Asunto(s)
Virus de la Fiebre Aftosa , Fiebre Aftosa , Animales , Brotes de Enfermedades/veterinaria , Fiebre Aftosa/epidemiología , Medición de Riesgo , Túnez/epidemiología
11.
BMC Public Health ; 20(1): 1488, 2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-33004028

RESUMEN

BACKGROUND: In 2015, antimicrobial resistance was identified as a public health priority for the South-Western Indian Ocean (SWIO) (i.e. Comoros, Madagascar, Mauritius, Mayotte (France), Reunion Island (France), and Seychelles). However, in 2020, colonization rates of antimicrobial-resistant bacteria (ARB) in human populations on most islands in SWIO were still not known and neither hospital nor community colonization rates had been estimated. The aim of this study was to estimate the prevalence of colonization of six ARB groups in hospitalized patients residing in the SWIO territories. The six groups comprise extended-spectrum betalactamase producing Enterobacteriaceae (ESBL-E), carbapenem-resistant Enterobacteriaceae (CRE), methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant enterococci (VRE), and both ceftazidime and/or imipenem-resistant Acinetobacter spp. (ACB), and ceftazidime and/or imipenem-resistant Pseudomonas spp. (PSA)). METHODS: Based on comprehensive hospital laboratory ARB screening data, we provide the first estimation of ARB colonization rates in hospitalized patients residing in SWIO (2015-2017). Using ARB colonization rates in Reunion Island (France) as the reference for estimating odds ratio, we identified at risk patients based on their territory of residence. RESULTS: The survey pointed to significantly higher overall ARB colonization rates in patients from Comoros, Madagascar, Mayotte, and Seychelles compared to Reunion Island as the reference. Extended-spectrum betalactamase producing Enterobacteriaceae was found to be the most common ARB group colonizing patients from SWIO territories. The highest MRSA colonization rates were observed in patients from Mayotte and Seychelles. Colonization by carbapenem-resistant Enterobacteriaceae (CRE) was highest in patients from Mauritius. CONCLUSION: These results identify high ARB colonization rates in hospitalized patients from SWIO territories that require further investigation, particularly CRE in Mauritius and MRSA in Seychelles and Mayotte. This study is the first step toward the implementation of a broader regional ARB surveillance system.


Asunto(s)
Antiinfecciosos , Staphylococcus aureus Resistente a Meticilina , Antagonistas de Receptores de Angiotensina , Inhibidores de la Enzima Convertidora de Angiotensina , Francia , Humanos , Océano Índico , Madagascar , Mauricio , Estudios Retrospectivos , Reunión/epidemiología , Seychelles
12.
Proc Natl Acad Sci U S A ; 117(39): 24567-24574, 2020 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-32929025

RESUMEN

Rift Valley fever (RVF) is an emerging, zoonotic, arboviral hemorrhagic fever threatening livestock and humans mainly in Africa. RVF is of global concern, having expanded its geographical range over the last decades. The impact of control measures on epidemic dynamics using empirical data has not been assessed. Here, we fitted a mathematical model to seroprevalence livestock and human RVF case data from the 2018-2019 epidemic in Mayotte to estimate viral transmission among livestock, and spillover from livestock to humans through both direct contact and vector-mediated routes. Model simulations were used to assess the impact of vaccination on reducing the epidemic size. The rate of spillover by direct contact was about twice as high as vector transmission. Assuming 30% of the population were farmers, each transmission route contributed to 45% and 55% of the number of human infections, respectively. Reactive vaccination immunizing 20% of the livestock population reduced the number of human cases by 30%. Vaccinating 1 mo later required using 50% more vaccine doses for a similar reduction. Vaccinating only farmers required 10 times as more vaccine doses for a similar reduction in human cases. Finally, with 52.0% (95% credible interval [CrI] [42.9-59.4]) of livestock immune at the end of the epidemic wave, viral reemergence in the next rainy season (2019-2020) is unlikely. Coordinated human and animal health surveillance, and timely livestock vaccination appear to be key to controlling RVF in this setting. We furthermore demonstrate the value of a One Health quantitative approach to surveillance and control of zoonotic infectious diseases.


Asunto(s)
Fiebre del Valle del Rift/epidemiología , Zoonosis/epidemiología , Animales , Comoras/epidemiología , Epidemias , Humanos , Ganado/virología , Fiebre del Valle del Rift/prevención & control , Fiebre del Valle del Rift/transmisión , Fiebre del Valle del Rift/virología , Virus de la Fiebre del Valle del Rift/genética , Virus de la Fiebre del Valle del Rift/aislamiento & purificación , Virus de la Fiebre del Valle del Rift/fisiología , Estaciones del Año , Estudios Seroepidemiológicos , Vacunación , Vacunas Virales/administración & dosificación , Zoonosis/transmisión , Zoonosis/virología
13.
Parasit Vectors ; 13(1): 395, 2020 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-32758286

RESUMEN

BACKGROUND: Arthropod borne virus infections are the cause of severe emerging diseases. Among the diseases due to arboviruses, dengue (DEN) and Rift Valley fever (RVF) are in the top ten in the list of diseases responsible of severe human cases worldwide. Understanding the effects of viral infection on gene expression in competent vectors is a challenge for the development of early diagnostic tools and may enable researchers and policy makers to better anticipate outbreaks in the next future. METHODS: In this study, alterations in gene expression across the entire Aedes aegypti genome during infection with DENV and RVFV were investigated in vitro at two time points of infection, the early phase (24 h) and the late phase (6 days) of infection using the RNA sequencing approach RESULTS: A total of 10 upregulated genes that share a similar expression profile during infection with both viruses at early and late phases of infection were identified. Family B and D clip-domain serine proteases (CLIP) were clearly overrepresented as well as C-type lectins and transferrin. CONCLUSIONS: Our data highlight the presence of 10 viral genes upregulated in Ae. aegypti during infection. They may also be targeted in the case of the development of broad-spectrum anti-viral diagnostic tools focusing the mosquito vectors rather than the mammalian hosts as they may predict the emergence of outbreaks.


Asunto(s)
Aedes , Virus del Dengue , Virus de la Fiebre del Valle del Rift , Transcriptoma , Aedes/genética , Aedes/virología , Animales , Infecciones por Arbovirus/transmisión , Arbovirus , Dengue/transmisión , Perfilación de la Expresión Génica , Genes de Insecto , Interacciones Microbiota-Huesped , Humanos , Lectinas Tipo C/genética , Mosquitos Vectores/genética , Mosquitos Vectores/virología , Fiebre del Valle del Rift/transmisión , Serina Proteasas/genética , Transferrina/genética
14.
Parasit Vectors ; 12(1): 562, 2019 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-31775850

RESUMEN

BACKGROUND: Reunion Island regularly faces outbreaks of epizootic haemorrhagic disease (EHD) and bluetongue (BT), two viral diseases transmitted by haematophagous midges of the genus Culicoides (Diptera: Ceratopogonidae) to ruminants. To date, five species of Culicoides are recorded in Reunion Island in which the first two are proven vector species: Culicoides bolitinos, C. imicola, C. enderleini, C. grahamii and C. kibatiensis. Meteorological and environmental factors can severely constrain Culicoides populations and activities and thereby affect dispersion and intensity of transmission of Culicoides-borne viruses. The aim of this study was to describe and predict the temporal dynamics of all Culicoides species present in Reunion Island. METHODS: Between 2016 and 2018, 55 biweekly Culicoides catches using Onderstepoort Veterinary Institute traps were set up in 11 sites. A hurdle model (i.e. a presence/absence model combined with an abundance model) was developed for each species in order to determine meteorological and environmental drivers of presence and abundance of Culicoides. RESULTS: Abundance displayed very strong heterogeneity between sites. Average Culicoides catch per site per night ranged from 4 to 45,875 individuals. Culicoides imicola was dominant at low altitude and C. kibatiensis at high altitude. A marked seasonality was observed for the three other species with annual variations. Twelve groups of variables were tested. It was found that presence and/or abundance of all five Culicoides species were driven by common parameters: rain, temperature, vegetation index, forested environment and host density. Other parameters such as wind speed and farm building opening size governed abundance level of some species. In addition, Culicoides populations were also affected by meteorological parameters and/or vegetation index with different lags of time, suggesting an impact on immature stages. Taking into account all the parameters for the final hurdle model, the error rate by Normalized Root mean Square Error ranged from 4.4 to 8.5%. CONCLUSIONS: To our knowledge, this is the first study to model Culicoides population dynamics in Reunion Island. In the absence of vaccination and vector control strategies, determining periods of high abundance of Culicoides is a crucial first step towards identifying periods at high risk of transmission for the two economically important viruses they transmit.


Asunto(s)
Ceratopogonidae/fisiología , Insectos Vectores/fisiología , Modelos Estadísticos , Animales , Océano Índico , Dinámica Poblacional , Lluvia , Reunión , Estaciones del Año , Temperatura
15.
PLoS One ; 14(9): e0221928, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31490968

RESUMEN

African swine fever (ASF) is a haemorrhagic contagious pig disease generally causing high mortality. ASF is enzootic in Madagascar with outbreaks reported each year. An ASF outbreak occurred in May 2015 in the municipality of Imerintsiatosika in Madagascar. We investigated the outbreak to describe it and to identify risk factors in order to propose control measures, and to document evidence of an ASF outbreak in an enzootic country. We took biological samples from very sick and dying pigs, sold by the farmer to the butcher, for PCR analysis. An active search for all possible farm-cases was carried out. A definition of suspected farm-case was established and we implemented a descriptive survey and a retrospective cohort study. Laboratory results confirmed ASF virus infection. Suspected farm-cases represented 81 farms out of 922. Out of 3081 pigs of infected farms, 44% (95% CI: 42-46%) were sick, of which 47% were sold or slaughtered. Case fatality was 60% (95% CI: 56-63%) while 21% (95% CI: 19-24%) of the diseased pigs recovered. The outbreak duration was nine months and half of the infected farms' pig population remained after the outbreak. Compared to the exotic breed, local pigs had twice the risk of infection. It is the first detailed report of an ASF outbreak in an enzootic situation. The disease still has a large impact with 50% animals lost. However, the case fatality is lower than expected that suggests the possibility of resistance and subclinical cases. Proximity to road and increased number of farms are risk factors so biosecurity measures are needed. Further studies are needed to understand why pigs of local breed are more affected. Finally, an acceptable alternative to the sale of sick animals should be found as this currently is the breeders' means to reducing economic loss.


Asunto(s)
Fiebre Porcina Africana/epidemiología , Brotes de Enfermedades/estadística & datos numéricos , Fiebre Porcina Africana/mortalidad , Fiebre Porcina Africana/transmisión , Animales , Incidencia , Madagascar/epidemiología , Factores de Riesgo , Porcinos
16.
PLoS Negl Trop Dis ; 13(9): e0007700, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31509527

RESUMEN

BACKGROUND: Rift Valley fever (RVF) is one of the main vector borne zoonotic diseases that affects a wide range of ruminants and human beings in Africa and the Arabian Peninsula. A rapid and specific test for RVF diagnosis at the site of a suspected outbreak is crucial for the implementation of control measures. METHODOLOGY/PRINCIPAL FINDINGS: A first-line lateral flow immunochromatographic strip test (LFT) was developed for the detection of the nucleoprotein (N) of the RVF virus (RVFV). Its diagnostic performance characteristics were evaluated using reference stocks isolates recovered from different hosts and in geographic regions mimicking clinical specimens and from known RVF negative serum samples. A high level of diagnostic accuracy (DSe (35/35), DSp (167/169)) was observed, including the absence of cross-reactivity with viruses belonging to different genera. CONCLUSION/SIGNIFICANCE: The fact no specialized reagents and laboratory equipment are needed, make this assay a valuable, first-line diagnostic tool in resource-poor diagnostic territories for on-site RVFV detection, however the staff require training.


Asunto(s)
Inmunoensayo/métodos , Fiebre del Valle del Rift/diagnóstico , Virus de la Fiebre del Valle del Rift/aislamiento & purificación , Animales , Artiodáctilos/virología , Culicidae/virología , Nucleoproteínas/análisis , Fiebre del Valle del Rift/sangre , Fiebre del Valle del Rift/virología , Sensibilidad y Especificidad
17.
Transbound Emerg Dis ; 66(6): 2601-2604, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31390479

RESUMEN

Mayotte is an island located in the Mozambique Channel, between Mozambique and Madagascar, in the South Western Indian Ocean region. A severe syndrome of unknown aetiology has been observed seasonally since 2009 in cattle (locally named "cattle flu"), associated with anorexia, nasal discharge, hyperthermia and lameness. We sampled blood from a panel of those severely affected animals at the onset of disease signs and analysed these samples by next-generation sequencing. We first identified the presence of ephemeral bovine fever viruses (BEFV), an arbovirus belonging to the genus Ephemerovirus within the family Rhabdoviridae, thus representing the first published sequences of BEFV viruses of African origin. In addition, we also discovered and genetically characterized a potential new species within the genus Ephemerovirus, called Mavingoni virus (MVGV) from one diseased animal. Finally, both MVGV and BEFV have been identified in cattle from the same herd, evidencing a co-circulation of different ephemeroviruses on the island. The clinical, epidemiological and virological information strongly suggests that these viruses represent the etiological agents of the observed "cattle flu" within this region. This study highlights the importance of the strengthening and harmonizing arboviral surveillance in Mayotte and its neighbouring areas, including Africa mainland, given the importance of the diffusion of infectious diseases (such as BEFV) mediated by animal and human movements in the South Western Indian Ocean area.


Asunto(s)
Enfermedades de los Bovinos/virología , Fiebre Efímera/virología , Ephemerovirus/clasificación , Ephemerovirus/genética , Animales , Bovinos , Enfermedades de los Bovinos/epidemiología , Comoras/epidemiología , Fiebre Efímera/epidemiología , Genoma Viral , Filogenia , Vigilancia de la Población , Análisis de Secuencia de ADN/veterinaria
18.
Open Forum Infect Dis ; 6(7): ofz227, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31281854

RESUMEN

After the documentation of sporadic cases of Q fever endocarditis, we conducted a serosurvey to assess Coxiella burnetii exposure on Reunion Island. Two hundred forty-one stored frozen human sera were analyzed using an immunofluorescence assay. The weighted seroprevalence of Q fever was of 6.81% (95% confidence interval, 4.02%-9.59%). Despite the absence of infection in youths <20 years of age, exposure was not driven by age or by gender. There was a spatial disparity in exposure across the island, with higher prevalence being reported in regions where ruminant farms are present. The seroprevalence pattern suggests that Q fever is endemic on Reunion Island.

19.
Parasit Vectors ; 12(1): 135, 2019 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-30902107

RESUMEN

BACKGROUND: The south-west insular territories of the Indian Ocean have recently received attention concerning the diversity of arthropods of medical or veterinary interest. While a recent study highlighted the circulation of Culicoides-borne viruses, namely bluetongue and epizootic hemorrhagic disease, with clinical cases in Mayotte (comprising two islands, Petite-Terre and Grand-Terre), Comoros Archipelago, no data have been published concerning the species diversity of Culicoides present on the two islands. RESULTS: A total of 194,734 biting midges were collected in 18 sites, covering two collection sessions (April and June) in Mayotte. Our study reports for the first time livestock-associated Culicoides species and recorded at least 17 described Afrotropical species and one undescribed species. The most abundant species during the April collection session were C. trifasciellus (84.1%), C. bolitinos (5.4%), C. enderleini (3.9%), C. leucostictus (3.3%) and C. rhizophorensis (2.1%). All other species including C. imicola represented less than 1% of the total collection. Abundance ranged between 126-78,842 females with a mean and median abundance of 14,338 and 5111 individuals/night/site, respectively. During the June collection, the abundance per night was low, ranging between 6-475 individuals. Despite low abundance, C. trifasciellus and C. bolitinos were still the most abundant species. Culicoides sp. #50 is recorded for the first time outside South Africa. CONCLUSIONS: Our study reports for the first time the Culicoides species list for Mayotte, Comoros Archipelago, Indian Ocean. The low abundance and rare occurrence of C. imicola, which is usually considered the most abundant species in the Afrotropical region, is unexpected. The most abundant and frequent species is C. trifasciellus, which is not considered as a vector species so far, but its role needs further investigation. Further work is needed to describe Culicoides sp. #50 and to carry on faunistic investigations on the other islands of the archipelago as well as in neighboring countries.


Asunto(s)
Ceratopogonidae/virología , Variación Genética , Distribución Animal , Animales , Ceratopogonidae/clasificación , Comoras , Femenino , Océano Índico
20.
Front Vet Sci ; 6: 455, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31921913

RESUMEN

Peste des petits ruminants virus (PPRV), responsible for peste des petits ruminants (PPR), is widely circulating in Africa and Asia. The disease is a huge burden for the economy and development of the affected countries. In Eastern Africa, the disease is considered endemic. Because of the geographic proximity and existing trade between eastern African countries and the Comoros archipelago, the latter is at risk of introduction and spread, and the first PPR outbreaks occurred in the Union of the Comoros in 2012. The objective of this study was to map the areas suitable for PPR occurrence and spread in the Union of the Comoros and four eastern African countries, namely Ethiopia, Uganda, Kenya, and Tanzania. A Geographic Information System (GIS)-based Multicriteria Evaluation (MCE) was developed. Risk factors for PPR occurrence and spread, and their relative importance, were identified using literature review and expert-based knowledge. Corresponding geographic data were collected, standardized, and combined based on a weighted linear combination to obtain PPR suitability maps. The accuracy of the maps was assessed using outbreak data from the EMPRES database and a ROC curve analysis. Our model showed an excellent ability to distinguish between absence and presence of outbreaks in Eastern Africa (AUC = 0.907; 95% CI [0.820-0.994]), and a very good performance in the Union of the Comoros (AUC = 0.889, 95% CI: [0.694-1]). These results highlight the efficiency of the GIS-MCE method, which can be applied at different geographic scales: continental, national and local. The resulting maps provide decision support tools for implementation of disease surveillance and control measures, thus contributing to the PPR eradication goal of OIE and FAO by 2030.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...